test_graph.py 25.9 KB
Newer Older
1
import unittest
2 3 4 5
from copy import deepcopy
import subprocess
import os
import random
6

7 8 9
from comsdk.graph import *
from comsdk.edge import *
from comsdk.communication import *
10 11 12 13 14 15 16

def dummy_edge(data):
    pass

def increment_a_edge(data):
    data['a'] += 1

17 18 19 20
def increment_a_array_edge(data):
    for i in range(len(data['a'])):
        data['a'][i] += 1

21 22 23 24 25 26
def increment_b_edge(data):
    data['b'] += 1

def decrement_a_edge(data):
    data['a'] -= 1

27 28 29 30 31 32 33 34 35 36
def write_a_edge(data):
    a_filename = os.path.join(data['__CURRENT_WORKING_DIR__'], 'tests/square_test_dir/input/a.dat')
    with open(a_filename, 'w') as f:
        f.write(str(data['a']))
    data['a_file'] = a_filename

def load_b_edge(data):
    b_filename = os.path.join(data['__WORKING_DIR__'], data['b_file'])
    with open(b_filename, 'r') as f:
        data['b'] = int(f.read())
37 38 39 40 41 42 43 44 45 46 47 48 49 50

def nonzero_predicate(data):
    return True if data['a'] != 0 else False

def positiveness_predicate(data):
    return True if data['a'] > 0 else False

def nonpositiveness_predicate(data):
    return True if data['a'] <= 0 else False

def print_exception(exc_data, data):
    print('exception data: {}'.format(exc_data))
    print('current state of data: {}'.format(data))

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def print_stdout(data, stdout_lines):
#    print(stdout)
    return {}

def check_task_finished(data, stdout_lines):
    '''
    Example:
    job-ID  prior   name       user         state submit/start at     queue                          slots ja-task-ID 
    -----------------------------------------------------------------------------------------------------------------
    663565 0.00053 RT700-tran scegr        r     09/19/2018 23:51:22 24core-128G.q@dc2s2b1a.arc3.le    24        
    663566 0.00053 RT800-tran scegr        r     09/19/2018 23:51:22 24core-128G.q@dc3s5b1a.arc3.le    24        
    663567 0.00053 RT900-tran scegr        r     09/20/2018 00:00:22 24core-128G.q@dc4s2b1b.arc3.le    24        
    663569 0.00053 RT1000-tra scegr        r     09/20/2018 00:05:07 24core-128G.q@dc1s1b3d.arc3.le    24 
    '''
    job_finished = True
    for line in stdout_lines[2:]:
        items = line.split()
        if int(items[0]) == data['job_ID']:
            job_finished = False
    return {'job_finished': job_finished}

def set_job_id(data, stdout_lines):
    return {'job_ID': int(stdout_lines[0].split()[2])} # example: 'Your job 664989 ("fe_170.310.sh") has been submitted'

def _create_data_from_dict(d):
    data = deepcopy(d)
    data['__CURRENT_WORKING_DIR__'] = os.getcwd()
    if not '__WORKING_DIR__' in data:
        data['__WORKING_DIR__'] = data['__CURRENT_WORKING_DIR__']
    return data

82 83 84
class GraphGoodCheck(unittest.TestCase):
    initial_conditions = range(-10, 10)

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    @classmethod
    def setUpClass(cls):
        command_line = 'cd tests/square; g++ square.cpp -o square'
        subprocess.call([command_line], shell=True)

        local_host = Host()
        local_host.add_program('square', os.path.join(os.getcwd(), 'tests', 'square'))
        cls.local_comm = LocalCommunication(local_host)
        cls.ssh_host = 'arc3.leeds.ac.uk'
        cls.ssh_cores = 24
        cls.ssh_user = 'mmap'
        cls.ssh_pswd = '1bdwbzsc'
        cls.ssh_path_to_tests = '/home/home01/mmap/tests'
        remote_host = RemoteHost(ssh_host='arc3.leeds.ac.uk', 
                                 cores=24,
                                 )
        remote_host.add_program('square', '{}/square'.format(cls.ssh_path_to_tests))
        remote_host.add_program('qsub')
        remote_host.add_program('qstat')
        cls.ssh_comm = SshCommunication(remote_host, 
                                        username=cls.ssh_user,
                                        password=cls.ssh_pswd,
                                        )
        cls.ssh_comm.mkdir('{}/square_test_dir'.format(cls.ssh_path_to_tests))

    @classmethod
    def tearDownClass(cls):
        aux.remove_if_exists('tests/square_test_dir/input/a.dat')
        aux.remove_if_exists('tests/square_test_dir/output/b.dat')
        cls.ssh_comm.rm('{}/square_test_dir'.format(cls.ssh_path_to_tests))

116
    def test_trivial_serial_graph(self):
117 118 119 120
        initial_datas = [{'a': ic} for ic in self.initial_conditions]
        invalid_initial_datas = [{'a': ic} for ic in (-1, 0)]
        initial_state, term_state, correct_outputs = self._get_trivial_serial_graph(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, invalid_initial_datas, correct_outputs)
121 122

    def test_trivial_parallel_graph(self):
123 124 125 126
        initial_datas = [{'a': ic, 'b': ic} for ic in self.initial_conditions]
        invalid_initial_datas = [{'a': ic, 'b': ic} for ic in (-2, -1, 0)]
        initial_state, term_state, correct_outputs = self._get_trivial_parallel_graph(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, invalid_initial_datas, correct_outputs)
127 128

    def test_trivial_cycled_graph(self):
129 130 131
        initial_datas = [{'a': ic} for ic in self.initial_conditions]
        initial_state, term_state, correct_outputs = self._get_trivial_cycled_graph(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)
132

133
    def test_complex_graph_made_from_trivial_ones_using_dummy_edges(self):
134 135 136
        '''
        serial graph + parallel graph + cycled graph
        '''
137 138 139
        initial_datas = [{'a': ic, 'b': ic} for ic in self.initial_conditions]
        invalid_initial_datas = [{'a': ic, 'b': ic} for ic in (-4, -3, -2, -1, 0)]
        s_1, s_2, correct_outputs = self._get_trivial_serial_graph(initial_datas)
140 141 142 143
        s_3, s_4, correct_outputs = self._get_trivial_parallel_graph(correct_outputs)
        s_5, s_6, correct_outputs = self._get_trivial_cycled_graph(correct_outputs)
        s_2.connect_to(s_3, edge=Edge(dummy_predicate, dummy_edge))
        s_4.connect_to(s_5, edge=Edge(dummy_predicate, dummy_edge))
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        self._run_graph(s_1, s_6, initial_datas, invalid_initial_datas, correct_outputs)

    def test_trivial_serial_graph_with_subgraph(self):
        initial_datas = [{'a': ic} for ic in self.initial_conditions]
        initial_state, term_state, correct_outputs = self._get_trivial_serial_graph_with_subgraph(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)

    def test_trivial_parallel_graph_with_subgraph(self):
        initial_datas = [{'a': ic, 'b': ic} for ic in self.initial_conditions]
        initial_state, term_state, correct_outputs = self._get_trivial_parallel_graph_with_subgraph(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)

    def test_complex_graph_made_from_trivial_ones_using_subgraphs(self):
        '''
        serial graph + parallel graph + cycled graph
        '''
        initial_datas = [{'a': ic, 'b': ic} for ic in self.initial_conditions]
        invalid_initial_datas = [{'a': ic, 'b': ic} for ic in (-4, -3, -2, -1, 0)]
        s_1, s_2, correct_outputs = self._get_trivial_serial_graph(initial_datas)
        s_3, s_4, correct_outputs = self._get_trivial_parallel_graph(correct_outputs)
        s_5, s_6, correct_outputs = self._get_trivial_cycled_graph(correct_outputs)
        s_2.replace_with_graph(Graph(s_3, s_4))
        s_4.replace_with_graph(Graph(s_5, s_6))
        print(correct_outputs)
        self._run_graph(s_1, s_6, initial_datas, invalid_initial_datas, correct_outputs)

    def test_trivial_graph_with_implicit_parallelization(self):
        '''
        s_1 -> s_2 -> s_3, with dummy edges
        s_2 = s_11 -> s_12 -> s_13, with +1 edges for a
        three implicitly parallel branches appear instead of s_2
        '''
        initial_datas = [{'a': [ic**i for i in range(1, 4)]} for ic in self.initial_conditions]
        initial_state, term_state, correct_outputs = self._get_trivial_graph_with_implicit_parallelization(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)

    def test_cycled_graph_with_implicit_parallelization(self):
        random_neg_ics = [[random.randrange(-20, -3) for _ in range(3)] for _ in range(10)]
        initial_datas = [{'a': random_neg_ic} for random_neg_ic in random_neg_ics]
        #initial_datas = [{'a': [-4, -12]},]
        #initial_datas = [{'a': [-3, -3]},]
        initial_state, term_state, correct_outputs = self._get_cycled_graph_with_implicit_parallelization(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)

    def test_trivial_graph_with_external_local_program(self):
        initial_datas = [{'a': ic, '__WORKING_DIR__': os.path.join(os.getcwd(), 'tests', 'square_test_dir', 'output')} for ic in self.initial_conditions]
        initial_state, term_state, correct_outputs = self._get_trivial_graph_with_external_local_program(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)

    def test_trivial_graph_with_external_remote_program(self):
        initial_datas = [{'a': ic,
                          '__WORKING_DIR__': os.path.join(os.getcwd(), 'tests', 'square_test_dir', 'output'),
                          '__REMOTE_WORKING_DIR__': '{}/square_test_dir'.format(self.ssh_path_to_tests)}
                          for ic in self.initial_conditions]
        initial_state, term_state, correct_outputs = self._get_trivial_graph_with_external_remote_program(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)

    def test_trivial_graph_with_external_remote_program_using_grid_engine(self):
        initial_datas = [{'a': ic,
                          'user': self.ssh_user,
                          'cores_required': 12,
                          'time_required': '12:00:00',
                          'qsub_script_name': 'square.sh',
                          '__WORKING_DIR__': os.path.join(os.getcwd(), 'tests', 'square_test_dir', 'output'),
                          '__REMOTE_WORKING_DIR__': '{}/square_test_dir'.format(self.ssh_path_to_tests)}
                          for ic in self.initial_conditions[0:2]]
        initial_state, term_state, correct_outputs = self._get_trivial_graph_with_external_remote_program_using_grid_engine(initial_datas)
        self._run_graph(initial_state, term_state, initial_datas, (), correct_outputs)
212 213 214 215 216 217 218

    def _get_trivial_serial_graph(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_3,
        p_12 = p_23 := a not 0
        f_12 = f_23 := a + 1
        '''
219 220 221
        s_1 = State('serial_s_1')
        s_2 = State('serial_s_2')
        s_3 = State('serial_s_3')
222 223 224 225
        s_1.connect_to(s_2, edge=Edge(nonzero_predicate, increment_a_edge))
        s_2.connect_to(s_3, edge=Edge(nonzero_predicate, increment_a_edge))
        correct_outputs = []
        for ic in initial_conditions:
226 227 228
            output = _create_data_from_dict(ic)
            output['a'] += 2
            correct_outputs.append(output)
229 230 231 232
        return s_1, s_3, correct_outputs

    def _get_trivial_parallel_graph(self, initial_conditions):
        '''
233 234 235
        s_1 -> s_2 -> s_3 ---------> s6s
            -> s_4 -> s_4_1 -> s_5 
                   -> s_4_2            
236 237 238 239 240
        p_12 = p_24 = p_13 = p_34 := a not 0
        f_12 = f_24 := a + 1
        f_13 = f_34 := b + 1
        '''

241
        s_1 = State('nonparallel_s_1')
242 243 244
        s_2 = State('parallel_s_2')
        s_3 = State('parallel_s_3')
        s_4 = State('parallel_s_4')
245 246
        s_4_1 = State('parallel_s_4_1')
        s_4_2 = State('parallel_s_4_2')
247 248
        s_5 = State('parallel_s_5')
        s_6 = State('nonparallel_s_6')
249
        s_1.connect_to(s_2, edge=Edge(nonzero_predicate, increment_a_edge))
250 251 252
        s_2.connect_to(s_3, edge=Edge(nonzero_predicate, increment_a_edge))
        s_3.connect_to(s_6, edge=Edge(nonzero_predicate, increment_a_edge))
        s_1.connect_to(s_4, edge=Edge(nonzero_predicate, increment_b_edge))
253 254 255 256
        s_4.connect_to(s_4_1, edge=Edge(nonzero_predicate, increment_b_edge))
        s_4.connect_to(s_4_2, edge=Edge(nonzero_predicate, increment_b_edge))
        s_4_1.connect_to(s_5,  edge=Edge(nonzero_predicate, increment_b_edge))
        s_4_2.connect_to(s_6,  edge=Edge(nonzero_predicate, increment_b_edge))
257
        s_5.connect_to(s_6, edge=Edge(nonzero_predicate, increment_b_edge))
258 259
        correct_outputs = []
        for ic in initial_conditions:
260 261 262 263 264
            output = _create_data_from_dict(ic)
            output['a'] += 3
            output['b'] += 3
            correct_outputs.append(output)
        return s_1, s_6, correct_outputs
265 266 267 268 269 270 271 272 273 274 275

    def _get_trivial_cycled_graph(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_3
            <-
        p_12 := True
        p_23 := a > 0
        p_23 := a <= 0
        f_12 = f_23 = f_24 := a + 1
        '''

276 277 278
        s_1 = State('cycled_s_1')
        s_2 = State('cycled_s_2')
        s_3 = State('cycled_s_3')
279 280 281 282 283
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, increment_a_edge))
        s_2.connect_to(s_3, edge=Edge(positiveness_predicate, increment_a_edge))
        s_2.connect_to(s_1, edge=Edge(nonpositiveness_predicate, increment_a_edge))
        correct_outputs = []
        for ic in initial_conditions:
284 285 286
            output = _create_data_from_dict(ic)
            if output['a'] >= 0:
                output['a'] += 2
287
            else:
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
                output['a'] = output['a']%2 + 2
            correct_outputs.append(output)
        return s_1, s_3, correct_outputs

    def _get_trivial_graph_with_external_local_program(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_3 -> s_4,
        p_12 = p_23 = dummy
        f_12 = write(a) into a.dat
        f_23 = a**2
        f_34 = read b.dat from the working dir into b
        '''
        square_edge = ExecutableProgramEdge('square', self.local_comm,
                                            output_dict={'b_file': 'b.dat'},
                                            trailing_args_keys=('a_file',),
                                            )
        s_1 = State('external_s_1')
        s_2 = State('external_s_2')
        s_3 = State('external_s_3')
        s_4 = State('external_s_4')
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, write_a_edge))
        s_2.connect_to(s_3, edge=square_edge)
        s_3.connect_to(s_4, edge=Edge(dummy_predicate, load_b_edge))
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['a_file'] = os.path.join(os.getcwd(), 'tests/square_test_dir/input/a.dat')
            output['b'] = output['a']**2
            output['b_file'] = 'b.dat'
            correct_outputs.append(output)
        return s_1, s_4, correct_outputs

    def _get_trivial_graph_with_external_remote_program(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_3 -> s_4 -> s_5 -> s_6,
        all predicates are dummy
        f_12 = write(a) into a.dat
        f_23 = upload a.dat into the working dir on remote
        f_34 = a**2
        f_45 = download b.dat from the working dir on remote to the working dir on local
        f_56 = read download b.dat from the working dir on local into b
        '''
        upload_edge = UploadOnRemoteEdge(self.ssh_comm,
                                         local_paths_keys=('a_file',),
                                         )
        square_edge = ExecutableProgramEdge('square', self.ssh_comm,
                                            output_dict={'b_file': 'b.dat'},
                                            trailing_args_keys=('a_file',),
                                            remote=True,
                                            )
        download_edge = DownloadFromRemoteEdge(self.ssh_comm,
                                               remote_paths_keys=('b_file',),
                                               )
        s_1 = State('remote_s_1')
        s_2 = State('remote_s_2')
        s_3 = State('remote_s_3')
        s_4 = State('remote_s_4')
        s_5 = State('remote_s_5')
        s_6 = State('remote_s_6')
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, write_a_edge))
        s_2.connect_to(s_3, edge=upload_edge)
        s_3.connect_to(s_4, edge=square_edge)
        s_4.connect_to(s_5, edge=download_edge)
        s_5.connect_to(s_6, edge=Edge(dummy_predicate, load_b_edge))
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['a_file'] = os.path.join(ic['__REMOTE_WORKING_DIR__'], 'a.dat')
            output['b'] = output['a']**2
            output['b_file'] = os.path.join(ic['__WORKING_DIR__'], 'b.dat')
            correct_outputs.append(output)
        return s_1, s_6, correct_outputs

    def _get_trivial_graph_with_external_remote_program_using_grid_engine(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_3 -> s_4 -> s_5 -> s_6 -> s_7 -> s_8 -> s_9,
                             <->
        all predicates, expect p_66 and p_67, are dummy
        p_66 = job unfinished
        p_67 = job finished
        f_12 = write(a) into a.dat
        f_23 = upload a.dat into the working dir on remote
        f_34 = make up qsub script launching square
        f_45 = upload qsub script
        f_56 = send job (a**2) via qsub
        f_66 = check job finished via qstat
        f_67 = download b.dat from the working dir on remote to the working dir on local
        f_78 = read download b.dat from the working dir on local into b
        f_89 = filter out a_file, b_file, job_ID, qsub_script
        '''
        make_up_qsub_script_edge = QsubScriptEdge('square', self.local_comm, self.ssh_comm,
                                                  trailing_args_keys=('a_file',),
                                                  )
        upload_a_edge = UploadOnRemoteEdge(self.ssh_comm,
                                           local_paths_keys=('a_file',),
                                           )
        upload_qsub_script_edge = UploadOnRemoteEdge(self.ssh_comm,
                                                     local_paths_keys=('qsub_script',),
                                                     )
        qsub_edge = ExecutableProgramEdge('qsub', self.ssh_comm,
                                            trailing_args_keys=('qsub_script',),
                                            output_dict={'job_finished': False, 'b_file': 'b.dat'},
                                            stdout_processor=set_job_id,
                                            remote=True,
                                            )
        qstat_edge = ExecutableProgramEdge('qstat', self.ssh_comm,
                                            predicate=job_unfinished_predicate,
                                            io_mapping=InOutMapping(keys_mapping={'u': 'user', 'job_ID': 'job_ID'}),
                                            keyword_names=('u',),
                                            remote=True,
                                            stdout_processor=check_task_finished,
                                            )
        download_edge = DownloadFromRemoteEdge(self.ssh_comm,
                                               predicate=job_finished_predicate,
                                               remote_paths_keys=('b_file',),
                                               )
        s_1 = State('remote_s_1')
        s_2 = State('remote_s_2')
        s_3 = State('remote_s_3')
        s_4 = State('remote_s_4')
        s_5 = State('remote_s_5')
        s_6 = State('remote_s_6')
        s_7 = State('remote_s_7')
        s_8 = State('remote_s_8')
        s_9 = State('remote_s_9')
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, write_a_edge))
        s_2.connect_to(s_3, edge=upload_a_edge)
        s_3.connect_to(s_4, edge=make_up_qsub_script_edge)
        s_4.connect_to(s_5, edge=upload_qsub_script_edge)
        s_5.connect_to(s_6, edge=qsub_edge)
        s_6.connect_to(s_6, edge=qstat_edge)
        s_6.connect_to(s_7, edge=download_edge)
        s_7.connect_to(s_8, edge=Edge(dummy_predicate, load_b_edge))
        def filter_data(data):
            del data['a_file']
            del data['b_file']
            del data['job_ID']
            del data['qsub_script']
        s_8.connect_to(s_9, edge=Edge(dummy_predicate, filter_data))
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['b'] = output['a']**2
            output['job_finished'] = True
            correct_outputs.append(output)
        return s_1, s_9, correct_outputs

    def _get_trivial_serial_graph_with_subgraph(self, initial_conditions):
        '''
        s_1 -> s_2,
        where s_2 is replaced by s_1 -> s_2
        p_12 = p_23 := dummy
        f_12 := a + 1
        '''
442 443 444
        
        pred = Func(func=dummy_predicate)
        morph = Func(func=increment_a_edge)
445 446 447
        s_1 = State('s_1')
        s_2 = State('s_2')
        s_3 = State('s_3')
448 449
        s_1.connect_to(s_2, edge=Edge(pred, morph))
        s_2.connect_to(s_3, edge=Edge(pred, morph))
450 451
        sub_s_1 = State('sub_s_1')
        sub_s_2 = State('sub_s_2')
452
        sub_s_1.connect_to(sub_s_2, edge=Edge(pred, morph))
453 454 455 456 457 458
        s_2.replace_with_graph(Graph(sub_s_1, sub_s_2))
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['a'] += 3
            correct_outputs.append(output)
459 460
        return s_1, s_3, correct_outputs

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    def _get_trivial_parallel_graph_with_subgraph(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_4
            -> s_3 ->
        where s_2 and s_3 is replaced by s_5 -> s_6 -> s_7
        all predicate are dummy
        f_12 = f_24 := a + 1
        f_13 = f_34 := b + 1
        f_56 = f_67 := a + 1
        '''

        asp = AllSelectionPolicy()
        s_1 = State('s_1', selection_policy=AllSelectionPolicy())
        s_2 = State('s_2')
        s_3 = State('s_3')
        s_4 = State('s_4')
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, increment_a_edge))
        s_1.connect_to(s_3, edge=Edge(dummy_predicate, increment_b_edge))
        s_2.connect_to(s_4, edge=Edge(dummy_predicate, increment_a_edge))
        s_3.connect_to(s_4, edge=Edge(dummy_predicate, increment_b_edge))
        sub1_s_5 = State('s_2_sub_s_5')
        sub1_s_6 = State('s_2_sub_s_6')
        sub1_s_7 = State('s_2_sub_s_7')
        sub2_s_5 = State('s_3_sub_s_5')
        sub2_s_6 = State('s_3_sub_s_6')
        sub2_s_7 = State('s_3_sub_s_7')
        sub1_s_5.connect_to(sub1_s_6, edge=Edge(dummy_predicate, increment_a_edge))
        sub1_s_6.connect_to(sub1_s_7, edge=Edge(dummy_predicate, increment_a_edge))
        sub2_s_5.connect_to(sub2_s_6, edge=Edge(dummy_predicate, increment_a_edge))
        sub2_s_6.connect_to(sub2_s_7, edge=Edge(dummy_predicate, increment_a_edge))
        s_2.replace_with_graph(Graph(sub1_s_5, sub1_s_7))
        s_3.replace_with_graph(Graph(sub2_s_5, sub2_s_7))
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['a'] += 6
            output['b'] += 2
            correct_outputs.append(output)
        return s_1, s_4, correct_outputs

    def _get_trivial_graph_with_implicit_parallelization(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_4
            -> s_3 ->
        where s_2 and s_3 is replaced by s_5 -> s_6 -> s_7
        all predicate are dummy
        f_12 = f_24 := a + 1
        f_13 = f_34 := b + 1
        f_56 = f_67 := a + 1
        '''

        #asp = AllSelectionPolicy()
        sub_s_1 = State('sub_s_1', array_keys_mapping={'a': 'a'})
        sub_s_2 = State('sub_s_2')
        sub_s_3 = State('sub_s_3')
        subgraph = Graph(sub_s_1, sub_s_3)
        s_1 = State('s_1')
        s_2 = State('s_2')
        s_3 = State('s_3')
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, dummy_edge))
        s_2.connect_to(s_3, edge=Edge(dummy_predicate, dummy_edge))
        sub_s_1.connect_to(sub_s_2, edge=Edge(dummy_predicate, increment_a_edge))
        sub_s_2.connect_to(sub_s_3, edge=Edge(dummy_predicate, increment_a_edge))
        s_2.replace_with_graph(subgraph)
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['a'] = [output['a'][i] + 2 for i in range(len(output['a']))]
            correct_outputs.append(output)
        return s_1, s_3, correct_outputs

    def _get_cycled_graph_with_implicit_parallelization(self, initial_conditions):
        '''
        s_1 -> s_2 -> s_3 -> s_4
                   <-
        p_23 := a > 0
        p_22 := a <= 0
        all other predicates are dummy
        f_11 = f_22 = f_23 = f_34 := a + 1
        '''

        s_sub_1 = State('s_sub_1', array_keys_mapping={'a': 'a'})
        s_sub_2 = State('s_sub_2')
        s_sub_3 = State('s_sub_3')
        s_1 = State('s_1')
        s_2 = State('s_2')
        s_sub_1.connect_to(s_sub_2, edge=Edge(dummy_predicate, increment_a_edge))
        s_sub_2.connect_to(s_sub_2, edge=Edge(lambda d: d['a'] <= 0, increment_a_edge))
        s_sub_2.connect_to(s_sub_3, edge=Edge(lambda d: d['a'] > 0, increment_a_edge))
        subgraph = Graph(s_sub_1, s_sub_3)
        s_1.connect_to(s_2, edge=Edge(dummy_predicate, increment_a_array_edge))
        s_1.replace_with_graph(subgraph)
        correct_outputs = []
        for ic in initial_conditions:
            output = _create_data_from_dict(ic)
            output['a'] = [3 for i in range(len(output['a']))]
            correct_outputs.append(output)
        return s_1, s_2, correct_outputs

    def _run_graph(self, initial_state, term_state, initial_datas, invalid_initial_datas, correct_outputs):
        graph = Graph(initial_state, term_state)
        for initial_data, correct_output in zip(initial_datas, correct_outputs):
            print('Doing ic = {}'.format(initial_data))
            data = deepcopy(initial_data)
            okay = graph.run(data)
            #print(data['__EXCEPTION__'])
            if initial_data in invalid_initial_datas:
                self.assertEqual('__EXCEPTION__' in data, True)
569 570 571
                self.assertEqual(okay, False)
            else:
                self.assertEqual(okay, True)
572
                self.assertEqual(data, correct_output)
573 574 575

if __name__ == '__main__':
    unittest.main()