cuda_kernels_general.hpp 4.95 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
// **************************************************************************
//
//    PARALUTION   www.paralution.com
//
//    Copyright (C) 2015  PARALUTION Labs UG (haftungsbeschränkt) & Co. KG
//                        Am Hasensprung 6, 76571 Gaggenau
//                        Handelsregister: Amtsgericht Mannheim, HRA 706051
//                        Vertreten durch:
//                        PARALUTION Labs Verwaltungs UG (haftungsbeschränkt)
//                        Am Hasensprung 6, 76571 Gaggenau
//                        Handelsregister: Amtsgericht Mannheim, HRB 721277
//                        Geschäftsführer: Dimitar Lukarski, Nico Trost
//
//    This program is free software: you can redistribute it and/or modify
//    it under the terms of the GNU General Public License as published by
//    the Free Software Foundation, either version 3 of the License, or
//    (at your option) any later version.
//
//    This program is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU General Public License for more details.
//
//    You should have received a copy of the GNU General Public License
//    along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
// **************************************************************************



// PARALUTION version 1.1.0 


#ifndef PARALUTION_GPU_CUDA_KERNELS_GENERAL_HPP_
#define PARALUTION_GPU_CUDA_KERNELS_GENERAL_HPP_

#include "../matrix_formats_ind.hpp"

namespace paralution {

/*
// 1D accessing with stride
template <typename ValueType, typename IndexType>
__global__ void kernel_set_to_zeros(const IndexType n, ValueType *data) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  for (IndexType i=ind; i<n; i+=gridDim.x)
    data[i] = ValueType(0.0);

}
*/

// Pure 1D accessing
template <typename ValueType, typename IndexType>
__global__ void kernel_set_to_zeros(const IndexType n, ValueType *data) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  if (ind < n)
    data[ind] = ValueType(0.0);

}

/*
// 1D accessing with stride
template <typename ValueType, typename IndexType>
__global__ void kernel_set_to_ones(const IndexType n, ValueType *data) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  for (IndexType i=ind; i<n; i+=gridDim.x)
    data[i] = ValueType(1.0);

}
*/

// Pure 1D accessing
template <typename ValueType, typename IndexType>
__global__ void kernel_set_to_ones(const IndexType n, ValueType *data) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  if (ind < n)
    data[ind] = ValueType(1.0);

}

template <typename IndexType>
__device__ IndexType  red_recurse(IndexType *src, IndexType *srcStart, IndexType stride) {

  IndexType a = 0;

  if (src < srcStart)
    return 0;

  a = *src;
  a += red_recurse<IndexType>(src-stride, srcStart, stride);

  return a;

}

template <typename IndexType>
__global__ void kernel_red_recurse(IndexType *dst, IndexType *src, IndexType stride, IndexType numElems) {

  IndexType ind = stride * (threadIdx.x + blockIdx.x * blockDim.x);

  if (ind >= numElems)
    return;

  *(dst+ind) = red_recurse<IndexType>(src+ind-stride, src, stride);

}

template <typename IndexType, unsigned int BLOCK_SIZE>
__global__ void kernel_red_partial_sum(IndexType *dst, const IndexType *src, const IndexType numElems) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  if (ind < numElems) {

    __shared__ IndexType data[BLOCK_SIZE];

    data[threadIdx.x] = src[ind];

    __syncthreads();

    for (IndexType i=BLOCK_SIZE/2; i>0; i/=2) {

      if (threadIdx.x < i)
        data[threadIdx.x] = data[threadIdx.x] + data[threadIdx.x+i];

      __syncthreads();

    }

    if (threadIdx.x == 0 && BLOCK_SIZE*(1+blockIdx.x)-1 < numElems)
      dst[BLOCK_SIZE*(1+blockIdx.x)-1] = data[0];

  }

}

template <typename IndexType>
__global__ void kernel_red_extrapolate(IndexType *dst, const IndexType *srcBorder,
                                       const IndexType *srcData, IndexType numElems) {

  IndexType ind = blockDim.x*(threadIdx.x + blockIdx.x*blockDim.x);

  if (ind < numElems-1) {

    IndexType sum = srcBorder[ind];
    IndexType limit = blockDim.x;

    if (ind+blockDim.x >= numElems)
      limit = numElems - ind;

//    for(IndexType i=0; i<blockDim.x && ind+i<numElems; ++i) {
    for(IndexType i=0; i<limit; ++i) {

      sum += srcData[ind+i];
      dst[ind+i] = sum;

    }

  }

}

template <typename IndexType>
__global__ void kernel_reverse_index(const IndexType n, const IndexType *perm, IndexType *out) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  if (ind < n)
    out[perm[ind]] = ind;

}

template <typename ValueType, typename IndexType>
__global__ void kernel_buffer_addscalar(const IndexType n, const ValueType scalar, ValueType *buff) {

  IndexType ind = blockIdx.x * blockDim.x + threadIdx.x;

  if (ind < n)
    buff[ind] = buff[ind] + scalar;

}


}

#endif